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Optimization of Multiwire Coil Ends Having 45 Degree Bends 

The current Multiwire process does not permit a change in direction of 
the wire other than 45 degree. The present paper answers the question of 
whether the bends in the flattened coil can be located along straight lines 
in such a way as to eliminate or reduce higher harmonics in the ends. The 
more general question of bends located along curves is not addressed. 

Single-layer ,coils typically consist of a band of wires with constant 
spacing in the two-dimensional part of the coil or straight-section. Two 
such bands, with returns at each end, complete one pole of a 2m pole magnet. 
If when wrapped around a circular cylinder of radius r, each band of a pole 
subtends an angle of w/3m radian at the axis of the cylinder, with r w/3m of 
gap between the two bands of  the pole, the coil will have zero third 
harmonic. The allowed harmonics n satisfy n/m = k, k = 1,3,5, - - - ; the 
fundamental is k = 1 and the third harmonic is k = 3. For a dipole (m = l), 
the third harmonic has 2n = 6 poles, in a quadrupole (m = 2) the third 
harmonic has 2n = 12 poles, etc. The nomenclature for n and m as given here 
is for consistency with reference 1; harmonics "bit' more commonly used 
correspond to i = n-1. 

Figure 1 shows half of a developed (flattened) end. The axes are z in 
the direction of the magnet axis and s ;  z = 0 is the end of the two dimen- 
sional part of the magnet. si 
before bending at the first short-dashed line, width b after the first bend 
and width c = zo - zB after the second bend.It is found that 

The band of conductors has width a = so - 

b/a = sin(n/4)(1 + tan(a)) (1) 

c/a = (1 + tan(a))/(l + cot@) (2) 

Eqn(2) shows that if p = w/2 - a, c = a, i.e., the spacing where the wires 
cross the pole ( s  = 0) is the same as on the side. If a = 22.5 degree and ,d 
= 67.5 degree, a = b = c, that is, the end maintains constant wire spacing 
everwhere. 

In all that follows, it will be assumed that the point A lies on the 
z = 0 axis, i.e., that s1 = si. 

The'harmonics can be computed using eqn(l2) of ref. 1; for constant 
radius that equation becomes 

Such an end for which s1 = s2 = 0 is half of a regular octagon. 

where qn is l/n of  the nth Taylor expansion coefficient of the integral of 
B For a 2m 
pole magnet, the relation between s and B is s = (w/(2 m) - B)r, where r is 
the cylinder radius. Note that a and p of Fig. 1 are independent of  m. For 
a winding with constant wire spacing, N(Bo) = r/d, where d is the spacing; 
if the band of wires ends at B o  = Bi as in Fig 1, eqn(3) becomes 

Qn = ( p o  1/(2 n))(rn/R2" + l/rn) and R is the iron radius. Y' 



= -  Qn J:i0, J C cos(n 0 )  dz qn n d  
0 0  

(4) 

The latter part of this double integral ( with respect to z) has 3 parts: 
0 5 z 5 zl, z1 I z I z 2  and z = z,, where z1 and z2 lie on the first and 
second lines of bends as shown in Fig 1 for a typical wire beginning at 0 , .  
On the first part, 0 = 0 ,  and 

z1 = r(Oi-O,)tan a 

The second line of bends intersects the s axis at s2  or e,, and 
equation 

z = r(0, - 0)tan p 

and on the middle segment, the typical wire has the equation 

z = r(O - 0 , ( 1  + tan a) + Bi tan a) 
Combining ( 6 )  and (7) with the elimination of 0 gives 

z 2  = r tan(P>(B, - 0 ,  + (ei - 0,)tan a ) / ( l  + tan p )  

Equation (4) then becomes 

qn _ -  - n d  a r2cos(n[Z + 6 (1 -I- tan a) - Bi tan a])dz r o  
z1 

+ 1;' cos(n 0,)dz )do, ( 9 )  

where z1 and z2 are given by eqn (5) and (8 ) ,  resp. Note that the third 
segment of the typical wire is independent of z and does not contribute to 
the integral. Eqn (9) can be evaluated in closed form; the result is 

n 

There are three independent parameters in eqn (10) : a, p ,  and 6,. There 
are, however, constraints on them. Firstly, b and c of eqn (1) and (2) must 
be greater than or equal to a. Secondly, the distance between bends must be 
greater than about 3 d. It is intended to use 15 mil (bare) wire in the 
RHIC corrector, for which d = 24 mil. The distance between points A and B 
of Figure 1 is given by 

and the distance from the z axis to B is given by 
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sB = r [n/2m - ( 8 ,  tan(@) + Bi)/(l + tan @ ) I  (12) 

The constraints are 1 3 d and sB 1 1.5 d. Since Bi = 7r/3mY these 
constraints result in an end shape which changes with m, if the constraint 
is in force. Using these numbers, (11) and (12) can be rewritten 

T 3 d sin(3n/4 - p )  e ,  2 - + 3 m  r sin B 

)(I + cot P I  e , < ( - - - -  n 1.5 d w/3m 
2 m  r 1 + tan @ 

It is found by a numerical survey that infinitely many roots of qn = 0 
for the third harmonic (k = 3) exist. The same is not true for k = 3 and k 
= 5 simultaneously, and it is found that qn for k = 5 is minimized by a 
configuration such that sB = 1.5 d, i.e., the equality in eqn(l4) holds, and 
such that a = c. Configurations for the quadrupole, octupole and decapole 
coils of the RHIC corrector which are in agreement with these findings have 
their parameters listed in Table 1. 

Table 1 

m B a 'i 8 2  A1 A3 A5 

2 46.23 43.77 30. 57.39 -.8415 .0006 1.130 
4 47.83 42.17 15. 27.16 -.8112 -.0007 1.475 
5 49.04 40.96 12. 20.89 -.7895 - . 0008  1.732 

The quantities Ak, k =,1,3,5 are the angular dependent part of eqn ( l o ) ,  the 
part in curly brackets. 

For comparison, the harmonics of the 2-D part of the winding can be 
computed using eqn(4), which for i3 = 8 ,  and z = 1, becomes 

2 

The curly bracket term in eqn (15) is termed ck; the coefficient of it is 
the same as in eqn(l0) for easy comparison. Table 2 gives ck for the coils 
given in Table 1. 

Table 2 

2 51.69 -.0335 0. .1675 25.11 .045 
4 46.76 -.0741 0. .3704 10.95 .135 
5 42.21 -.lo26 0. .5129 7.70 .225 

The quantity Le = Al/C, is the effective length of the end in mm, 
assuming iron over the ends the same as in the straight section. Since C5 
is the fifth harmonic per mm, it should be compared with A5/L, the fifth 
harmonic per mm of effective length; in all cases, the ends are better than 
the straight section. This being the case, it may be worthwhile to 
standardize the various angles so that the ends will scale with m. If m 8 ,  



is held constant at, say, LOO degree (which increases sB to 1.96d or 47 mil 
in the decapole), then ,5' and a are independent of m and are found to be 
50.45 degree and 39.55 degree, resp. Likewise the Ak are independent of m 
and are -.7653,-.0002 and 2.023, resp. for k = 1,3 and 5. Since the 
straight section is unchanged, only Le and A5/Le of Table 2 are different; 
they are given in Table 3. 

Table 3 

m Le,- A5/Le 

2 22.84 .089 
4 10.33 .lo6 
5 7.46 .271 

The fifth harmonics per unit effective length are still only about 1/2 the 
2-D values (C5 of Table 2). An end having these parameters is sketched in 
Figure 2. From eqn(1) , the wire spacing in the intermediate region is 29% 
greater than in the straight section, or 31 mil. 

Although the ends above are optimized with respect to harmonics, they 
are not the shortest posible ends; that distinction is reserved for ends 
which obey the equality in eqn(l3) (a = 3 d) and have a = c. All such ends 
(for a given m) have the same physical length, regardless of a. How good 
are short ends? To discuss this, it is better to use as a measure of "good- 
ness" the magnitude of the unwanted harmonics, viz. k = 3 and 5 at a refere- 
nce radius. A typical reference radius is about 2/3 the coil radius; in the 
RHIC Corrector, the reference radius is xo = 25 mm. The magnitude is Mk = 

n qn Two relative measures of quality suggest themselves: the first 
is the integrated ratio RIk = 2 Mk(end)/(Ls M , ( S ) )  where M,(S) is the 
magnitude of the fundamental in the straight-section which has length Ls. 
The second is Rbfk = [Mk(end)/Le]/M,(S) or the magnitude of the unwanted 
harmonic per unit effective length in the end divided by the magnitude of 
the fundamental in the straight-section. This second ratio is an indication 
of the size of the "bump" in the unwanted harmonics at the end. Table 4 
gives these two ratios (times 10 ) for two short ends, a = 22.5 and a = 45 
degree, and for the optimized ends. 
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Table 4 
Field Magnitude Ratios times lo4 

type 

short 
I1 

It  

short 
11 

11 

opt. 
11 

11 

m 

2 
4 
5 

2 
4 
5 

2 
4 
5 

a 

45.0 
I1 

11 

22.5 
11 

11 

39.55 
It 

11 

Le, - 
16.2 
8.0 
6.1 

15.2 
7 . 4  
5.6 

22.8 
10.3 
7.5 

$ 9  - 
28.4 
13.5 
10.1 

28.4 
13.5 
10.1 

37.0 
16.7 
12.1 

RI, 

11.3 
0.7 
0.4 

1.3 
- .1 
- .1 

0. 
0. 
0. 

RI5 

0. 
0. 
0. 

- .5 
0. 
0. 

- .2 
0. 
0. 

R M 3  

174.0 
22.7 
16.8 

21.8 
-3.3 
-6.3 

0. 
0. 
0. 

Rbf5 

0.4 
0. 
0. 

-7.8 
- .1 
- .1 

-2 .4  
0. 
0. 



The physical length 5 is the maximum value for z,, obtained when 6, = 0 in 
eqn (8). The short end with Q = 22.5 (equal wire spacing everywhere) is 
probably acceptable, although there is a sizable bump in the 12 pole term of 
the quadrupole, RM,; the optimized end is preferred. 

The 2-d part of the M I C  Corrector dipole winding is not a single-layer 
60 degree (~/3 radian) winding. It has 6 layers in 3, approximately equal 
pairs, with angles Oi and radii as given in Table 5. 

Table 5 

layer no. 1 2 3 4 5 6 

r, - 60.41 61.10 61.79 62.47 63.16 63.84 
78.75 78.43 62.87 62.74 33.85 33.49 'i 

Optimization is most conveniently done by adjusting the straight- 
section lengths of two of the three double layers, similar to what is 
presently done with cable-wound dipoles. Since the Corrector dipoles do not 
occupy a large fraction of the ring, it is sufficient to minimize only the 
first unwanted harmonic, k = n = 3, but there is no reason not to optimize 
both. The three pairs of straight-sections will have incremental lengths at 
one end Ri, i = 1,2,3, one of which will be zero, chosen so that the other 
two will be greater than zero. The set of linear equations to be solved for 
the Ri is A 

[U] R = -6 (16) 

where [U] is one of the three 2 x 2 subsets of a 2 x 3 matrix, an element of  
which is Uik = X Mk where the sum is of the 2 values of  Mk in the ith double 
layer and Mk is calculated using qn given by eqn (15). This Mk will 
hereafter be termed MSk. Likewise, Ek =- X Mk, where the sum is over the 6 
layers and Mk is calculated using qn given by eqn (10) ; this Mk will be 
termed MEk. 

In principle, each of the three double layers could have it's own end 
configuration, but adequate designs can be obtained using the same 
configuration for all three pairs. By the "same configuration" is meant 
short end (AB = 3 d) , long end (sB = 1.5d) or 0 ,  equal to a fixed value. 
The setting up and solving of eqn (16) is done in a computer program 
"AUTOEND" which gives the two Ri for each of the three solutions, and in 
addition calculates Le and 5 for that solution which has both Ri greater 
than or equal to zero. The effective length is now given by 

The physical length 5 is now the maximum value of z,(6,=0) f Ri for the six 
layers. 

Figure 3 is the output generated by AUTOEND for four configurations; 
each configuration has five lines of print. The first of the five lines 
gives m, Q and a parameter T2 which controls how 6, is generated: T2 = -1 
generates short ends, T2 = 0 generates long ends and T2 > 0. is equal to a 
fixed value of 0 , .  The next three lines give the calculated straight- 
section lengths Ri, i = 1,2 or 3 which make the integrated harmonics k = 3 
and 5 equal to zero (in each line, the missing Ri is held at zero). The 



final line is the effective length and the physical length in meters. The 
surprising thing is that the listed value of a, selected (by cut and try) to 
minimize the positive lengths, results in a second layer also having zero 
length. Of the four cases, the shortest physical length results from the 
"long end" case, i.e. sB = 1.5d in all six layers. Figure 4 shows the 
developed inner layer of each pair of the three double layers for this 
case, which has an effective length of 62.7 mm and physical length of 99.4 

The straight section lengths of the four harmonic coils in the RHIC 
Corrector are determined from the requirement that the effective length of 
each coil be 0.5 meter. This means Lss = 0.5 - 2 Le and the overall 
physical length is then Lo = Lss + 2 5 .  These lengths are given in Table 
6. 

mm. 

Table 6 

Lss, 

long 0.3746 

opt. 0.4794 
opt. 0.4850 
short(a=22.5) 0.4696 
short(a=22.5) 0.4852 
short(a=22.5) 0.4888 

opt. 0.4544 

Lo, m 

0.5733 
0.5284 
0.5128 
0.5092 
0.5264 
0.5122 
0.5090 
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M,A,T2 = 1 32.7145 -1.00.00 
L ( l ) ,  L ( 2 )  = 0.06995 0.00000 
L ( l ) ,  L ( 3 )  = 0.06995 0.00000 
L ( 2 ) ,  L ( 3 )  = -0.07396 -0.06972 
EFF LENGTH, PHYS LENGTH = 0.06632 0 ,15488  
M,A,T2 = 1 44.9500 0 .0000 
L ( l ) ,  L ( 2 )  = 0.00350 0.00000 
L ( l ) ,  L ( 3 )  = 0.00350 0.00000 
L ( 2 ) ,  L ( 3 )  = -0.00370 -0.00349 
EFF LENGTH, PHYS LENGTH = 0 .06271  0.09937 
M,A,T2 = 1 43.7718 98.0000 
L ( l ) ,  L ( 2 )  = 0.06050 0.00000 
L ( l ) ,  L ( 3 )  = 0.06050 0.00000 
L ( 2 ) ,  L ( 3 )  = -0.06397 -0.06030 
EFF LENGTH, PHYS LENGTH = 0.07965 0.15479 
M,A,T2 = 1 42.2531 90.0000 
L ( l ) ,  L ( 2 )  = 0 .07261  0.00000 
L ( l ) ,  L ( 3 )  = 0 .07261  0.00000 
L ( 2 ) ,  L ( 3 )  = -0.07677 -0.07237 
EFF LENGTH, PHYS LENGTH = 0.08105 0 .16271  




